Introduction to the Respiratory System

- Describe primary functions of the respiratory system
- Describe the anatomy of the respiratory system. Identify organs involved
- Define and compare external respiration and internal respiration
- Understand the mechanics of breathing
- Understand diffusion of gases from the lungs into the blood and then to the tissues
- Understand how carbon dioxide is transported in the blood and removed from the body
- Describe the structure of hemoglobin, its importance in gas transport and factors that affect its shape
- Understand the Oxygen-Hemoglobin Saturation Curve, which factors affect its shape and implications on physiology
- Describe how respiration is regulated.
- Understand how acid-base homeostasis is maintained and how acid-base disturbances are corrected
- Be able to compare and contrast respiratory strategies of different species.

Graciously provided by Dr. M. Gardner and modified by Dr. C. Gerin

Definitions

- Respiration = sequence of events that result in the exchange of oxygen and carbon dioxide between the external environment and the mitochondria. Why do we need O 2 and why do we have to exhale CO 2 ?
- External respiration = gas exchange at the respiratory surface
- Internal respiration = gas exchange at the tissues
- Mitochondrial respiration = production of ATP via oxidation of carbohydrates, amino acids, or fatty acids. Oxygen is consumed and carbon dioxide is produced

Diffusion is the movement of molecules from a high concentration to a low concentration.
Gradients can be pressure (gases), electrochemical (ions) or just chemical (glucose)

Chapter 10 Lecture

- Mitochondria consume O_{2} to produce ATP
- Produce CO_{2} in the process. Where?
- Organisms must have mechanisms to obtain O_{2} from the environment and get rid of CO_{2}. Why get rid of CO ?
- $\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O} \leftrightarrow \mathrm{H}++\mathrm{HCO}-$
- An increase in $\mathrm{H}+$, decreases pH

First, we will look at how gases behave.....

Figure 25.06 Tontora - PAP 120
Copyight O John Wiey and Sons, Inc. All inghts reserved.
Copyright © 2005 Pearson Education, Inc., publishing as Benjamin Cummings

Respiratory systems - diffusion rate

The Fick equation

$J=-D A d C / d x$

$J=$ rate of diffusion (moles/sec)
$D=$ diffusion coefficient $=$ how easily a substance can diffuse
$A=$ area of the membrane
$d C=$ concentration gradient
$d x=$ diffusion distance

For gases, we usually use partial pressure rather than concentration Gases will move down pressure gradients. Remember this. From high Lower pressure

Respiratory systems - diffusion rate

$$
\mathrm{J}=-\mathrm{DAdC} / \mathrm{dx}
$$

- Rate of diffusion will be greatest when the diffusion coefficient (D), area of the membrane (A), and energy gradients ($d C / d x$) are large, but the diffusion distance is small
- Consequently, gas exchange surfaces are typically thin = short diffusion distance, with
a large surface area

Pulmonary Ventilation

Boyle' s Law = pressure of a gas in a closed container is inversely proportional to the volume of the container

Boyle's Law: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
https://www.youtube.com/watch?v=q6-oyxnkZC0

Respiratory systems use changes in volume to cause changes in pressure!

Gases Dissolve in liquids

Henry's Law

- Gases have to dissolve before they diffuse
- When a gas under pressure comes in contact with liquid, the gas dissolves in liquid until equilibrium is reached
- At a given temperature the amount of a gas in solution is proportional to partial pressure of that gas
- What is solubility?
\star Henry's law: [G] = $P_{\text {gas }} \times S_{\text {gas }}$
$\star G$ is the concentration of the gas in solution
Pgas $=$ Partial pressure of the gas
Sgas = how easily a gas can dissolve
 in a solution

Gases Dissolve in liquids. Henry's law

Initial state:
no O_{2} in solution

At equilibrium, PO_{2} in air and water is
equal. Low O_{2} solubility means concentrations are not equal.

Oxygen dissolves

When CO_{2} is at equilibrium at the same partial pressure, more CO_{2} dissolves.

CO_{2} is much more soluble in water than is O_{2}. Thus, at the same partial pressure, more CO_{2} will be dissolved in a solution than will oxygen. Need a O2 carrier due to low SO2

Diffusion Rates and molecular weight

Graham's law = The relative diffusion of a given gas is proportional to its solubility in the liquid and inversely proportional to the square root of its molecular weight:

Diffusion rate = solubility/VMW

- $\mathrm{O}_{2} 32$ atomic mass units
- $\mathrm{CO}_{2} 44 \mathrm{amu}$
- In air "solubilities" are the same ($1000 \mathrm{ml} / \mathrm{L}$ at $20^{\circ} \mathrm{C}$). So oxygen diffuses about 1.2 times faster than CO_{2} in air.
- However, CO_{2} is about 24 times more soluble in aqueous solutions than O_{2}. So CO_{2} diffuses about 20 times faster than O_{2} in water.

Again, why do we care? If we don't get rid of CO2, acid-base homeostasis is mucked up $:$

Diffusion Rates at a constant temperature

Combining the Fick equation with Henry's and Graham's laws:

$$
\text { Diffusion rate }=\mathrm{dP}_{\text {gas }} \times \mathbf{A} \times \mathrm{S}_{\text {gas }} / X \times \sqrt{ }(\mathrm{MW})
$$

At a constant temperature the rate of diffusion is proportional to

- Partial pressure gradient ($\mathrm{dP}_{\mathrm{gas}}$) = high to low
- Cross-sectional area $(A)=$ doesn' t change much as adult
- Solubility of the gas in the fluid ($\mathrm{S}_{\text {gas }}$)
and inversely proportional to
- Diffusion distance (X)
- Molecular weight of the gas (MW)

So what do all of these equations really mean?

Fish versus Terrestrial animals

Surface Area to Volume Ratio

- As organisms grow larger, their ratio of surface area to volume decreases
- This limits the area available for diffusion and increases the diffusion distance
J= -DAdC/dx

That's why we need respiratory systems

Respiratory strategies of animals

- Unicellular and small multicellular organisms rely on diffusion for gas exchange
- Larger organisms must rely on a combination of bulk flow and diffusion for gas exchange, i.e. they need a respiratory system
- Bulk flow = large amount
 of medium = air or water
- Then the gases are exchanged by diffusion

Most animals have a circulatory system

Diffusion of gases across a specialized respiratory surface accompanied by circulatory transport

External medium

Respiratory surface

Circulatory system

Tissue

Respiratory Strategies

Animals more than a few millimeters thick use one of three respiratory strategies

- Circulating the external medium through the body = Sponges, cnidarians (jellyfish) and insects
- Diffusion of gases across the body surface accompanied by circulatory transport
- Cutaneous respiration = skin
- Most aquatic invertebrates, some amphibians, eggs of birds
- Diffusion of gases across a specialized respiratory surface accompanied by circulatory transport
- Gills = evaginations; lungs =invaginations
- Vertebrates

Cutaneous respiration

Respiration through skin

Found in some aquatic invertebrates and a few vertebrates

Disadvantages:

- Relatively low surface area
- Conflict between respiration and protection = if skin gets damaged, respiration gets compromised $:$

Salamander

Annelid

Lake Titicaca frog

External gills

Gills originate as outpocketings = evaginations

- Advantages: high surface area, exposed to medium
- Disadvantages: easily damaged, not suitable in air
- Gills dry out and collapse in air. Why is drying out bad? If dried out, gases cant diffuse because they must first dissolve. If collapse, surface area reduced

Salamander

Polychaete

Internal gills

- Advantages: High surface area, protected
- Disadvantages: not suitable in air = see previous slide, external gills

Lungs

Originate as infoldings = invaginations

- Advantages: High surface area, protected, suitable for breathing air
- Disadvantages: not suitable in water. Why? O2 solubility is very low in fluid and diffusion distance has greatly increased

Ventilation

Ventilation = The active movement of the respiratory medium (air or water) across the respiratory surface. Bulk flow = large quantity of air or water

Flow $=\Delta \mathrm{P} / \mathrm{R}=$ pressure gradient/resistance. Flow in the two tubes is equal because pressure gradients are equal. Animals will affect pressure gradients by changing volume. Increase volume to decrease pressure and air/water will go down pressure gradients

$$
800 \rightarrow \quad 400
$$

Types of ventilation

- Nondirectional - medium flows past the respiratory surface in an unpredictable pattern = air across frog skin
- Tidal - medium moves in and out the same structure = lungs in mammals
- Unidirectional - medium enters the chamber at one point and exits at another = in fish.. More later

Note: Air and water will move down pressure gradients.

Nondirectional ventilation

Medium flows past the respiratory surface in an unpredictable pattern

Tidal ventilation

Medium moves in and out the same structure

Gas exchange - unidirectional ventilation

Maintain gradient.
PO_{2} of blood approaches that of the inhalant medium

Gas exchange - unidirectional ventilation

Cross-current gas exchange

The P_{02} of arterial blood is derived from a mixture of all serial air-blood capillary units and exceeds that of the exhaled P_{02}.
$89+77+65+53+41 / 5=65$

Types of ventilation - Summary

Ventilation and Gas Exchange

Because of the different physical properties of air and water, animals use different strategies depending on the medium in which they live

Differences

- $\left[\mathrm{O}_{\text {air }}\right]$ greater than [$\left.\mathrm{O}_{\text {water }}\right]$. Think Henry's law....
- Water is more dense and viscous than air. Fick's equation....
- Evaporation is only an issue for air breathers
- Solubility of O 2 in water a lot less so fish/aquatic animals have to worry more about O2

What strategies are being used? Next slides

Sponges and Cnidarians - in water

- Circulate the external medium through an internal cavity
- In sponges flagella move water in through ostia and out through the osculum. Flagella in humans = sperm
- In cnidarians (jellyfish) muscle contractions move water in and out through the mouth

Molluscs - in water

Two strategies for ventilating their gills and mantle cavity

- Beating of cilia on gills move water across the gills unidirectionally. Cilia are structures that beat rhythmically and move "stuff"
- Blood flow is countercurrent
- Snails and clams
- Muscular contractions of the mantle propel water unidirectionally through the mantle cavity past the gills
- Blood flow is countercurrent
- Cephalopods (squid)

Crustaceans - in water

- Shrimp, crabs and lobsters, have gills derived from modified appendages located within a branchial cavity
- Movements of the gill bailer propels water out of the branchial chamber; the negative pressure sucks water across the gills

Echinoderms - in water

- Sea cucumbers use muscular contractions of the cloaca and the respiratory tree to breathe water tidally though the anus

(b) Sea cucumber

Jawless Fishes - Hagfish - in water

Lamprey and hagfish have multiple pairs of gill sacs

Hagfish

- A muscular pump (= velum) propels water through the respiratory cavity
- Water enters the median nostril and leaves throuah a aill openina
- Flow is unidirectional
- Blood flow is countercurrent

(a) Hagfish (side view and Iongitudinal section)

Jawless Fishes - Lamprey - in water

Lamprey

- Ventilation is similar to that in hagfish when not feeding
- When feeding the mouth is attached to a prey (parasitic)
- Ventilation is tidal though the gill openings when feeding

(b) Lamprey (side view and longitudinal section)

Elasmobranchs - sharks, skates and rays - in

 water
Steps in ventilation

- Expand the buccal cavity = this increases the volume and so decreases the pressure and water flows down pressure gradients
- Increased volume sucks fluid/water into the buccal cavity via the mouth and spiracles (hoels/pores)
- Mouth and spiracles close
- Muscles around the buccal cavity contact forcing water past the gills and out the external gill slits
- Water flow is unidirectionally Blood flow is countercurrent

Shark's head (horlaontal section)

Teleost Fishes - in water

(a) Teleost fish (lateral view and horizontal section)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

Water flows in via the mouth, out via the opercular opening

Teleost Fishes

(b) Ventilatory cycle of teleosts

More about fish Gills

Fish gills are arranged for countercurrent flow

Water breathers

Outline and list:

Which water breathing animals use cilia, muscular contractions.

How is water brought into respiratory structure? What is the common method?

Ventilation and Gas Exchange in Air

- Arthropods (eeeekkkk)
- Vertebrates

Ventilation - terrestrial molluscs

- The "pulmonate" molluscs lack gills (or have highly reduced gills)
- Instead, mantle cavity is highly vascularized
- Garden snails and terrestrial slugs are pulmonates
- Pumping of the mantle cavity moves air in and out

https://www.google.com/search?q=pulmonate
+/ung\&source=Inms\&tbm=isch\&sa=X\&ei=MMqLU-37Fsm
Tqgb724D4Dw\&ved=0CAYQ_AUoAQ\&biw=1440\&bih=81 7\#q=pulmonate+lung
+slugs\&tbm=isch\&facrc=_\&imgdii=_\&imgrc=GPRFDb2Rp YJE6M\%253A\%3BdyNMp 2HzkoJSM\%3Bhttp\%253A
\%252F\%252Fwww.comoxvalleynaturalist.bc.ca
\%252Fassets\%252Fimages\%252Fmisc
\%252Fbanana_slug.jpg\%3Bhttp\%253A\%252F
\%252Fwww.comoxvalleynaturalist.bc.ca
\%252Fknowing_nature\%252F2005\%252Fslugs.html
\%3B300\%3B225

Arthropods (eeeeeeek)

- Crustaceans = crabs, woodlice and sowbugs
- Chelicerates = spiders and scorpions
- Insects

Crustaceans

Terrestrial crabs

- Respiratory structures and the processes of ventilation are similar to marine relatives, but
- Gills are stiff so they do not collapse in air
- Branchial cavity is highly vascularized and acts as the primary site of gas exchange
- Movements of the gill bailer propels air in and out of the branchial chamber
- Remember: Gills in marine animals collapse and dry out in air.

Chelicerates - Spiders and scorpions

Have four book lungs

- Consists of 10-100 lamellae = high surface area
- Open to outside via spiracles
- Gases diffuse in and out

Some spiders also have a tracheal system - series of air-filled tubes

- Oxygen diffuses into the trachea and dissolves in the interstitial fluid before diffusing into the tissues. Interstitial fluid = outside cells

Insects

- Have an extensive tracheal system - series of air-filled tubes
- Tracheoles - terminating ends of tubes that are filled with hemolymph
- Oxygen dissolves in the hemolymph = blood of insects
- Open to outside via spiracles
- Gases diffuse in and out
- High diffusion coefficient of oxygen in air allows oxygen to diffuse through the tracheal system

Something "cool" about aquatic insects

- Most aquatic insects breathe air
- Mosquito larvae have "snorkel"

Air breathing vertebrates

- Air breathing evolved in fishes
- Aquatic habitats can become hypoxic = low O2
- Under these conditions, the ability to breathe air is a substantial benefit

We will discuss

- Air-breathing Fish
- Amphibians
- Reptiles
- Birds
- Mammals

Evolution of air breathing

Air breathing has evolved multiple times in fishes

Types of respiratory structures

- Reinforced gills that do not collapse in air = such as stiff gills
- Mouth or pharyngeal cavity for gas exchange = highly vascularized = lots of superficial blood vessels in mouth or pharyngeal cavity to take up O2
- Vascularized stomach = blood vessels in stomach take up O2
- Specialized pockets of the gut = also high vascularized
- Lungs

Ventilation is tidal using buccal force similar to other fish = helps to push air into respiratory structure

Note: Some fish use "aquatic surface respiration" when hypoxic = Swim to the surface and ventilate gills with water from the thin well-oxygenated water layer near surface

Air-breathing fish

Expand buccal cavity = increase volume to decrease pressure Very little mixing of fresh and old water \odot

Amphibians - ventilation

Types of respiratory structures

- Cutaneous respiration = use skin
- External gills - what were advantages/disadvantages?
- Simple bilobed lungs; more complex in terrestrial frogs and toads Ventilation is tidal using a buccal force pump

Amphibians

Reptiles

- Have two lungs
- Can be simple sacs with honeycombed walls or highly divided chambers in more active species
- More divisions result in more surface area

Ventilation

- Tidal
- Rely on suction pumps
- Results in the separation of feeding and respiratory muscles
- Two phases: inspiration and expiration
- Use one of several mechanisms to change the volume of the chest cavity. Why do we need to change the volume? To decrease pressure

```
(c) A multicameral lung in a monitor lizard
```


Reptiles: mechanisms to change the volume

- Snakes and lizards: use intercostal muscles.
- Turtles and tortoises: Use abdominal muscles
- Crocodilians: Diaphramaticus muscles contract which decreases the volume in the abdominal cavity and increases the volume of the lungs. As a result pressure in the lungs decreases.

Ventilation in birds and mammals

- Birds use unidirectional ventilation
- Mammals use tidal ventilation

Birds

- Lung is stiff and changes little in volume - So how can birds change volume?
- Rely on a series of flexible air sacs. Air sacs allow them to increase volume and decrease pressure
- Gas exchange occurs at parabronchi
- Air sacs = no gas exchange $=$ function is to move air through respiratory tract

Oxygen extraction efficiency high (up to 90\%)

bira ventilation

Requires two cycles of inhalation and exhalation Air flow across the respiratory surfaces is unidirectional

Bird Ventilation

Inhalations expand air sacs
Exhalation = compress air sacs
Inhale = air into caudal or anterior air sacs
Exhale $=$ air into lungs = gas exchange $=\mathrm{O} 2$ into blood Inhale = air into cranial or posterior air sacs
Exhale = air out

Mammals

Two main parts

- Upper respiratory tract: mouth, nasal cavity, pharynx, trachea
- Lower respiratory tract: bronchi and lungs

Alveoli are the site of gas exchange

Both lungs are surrounded by a pleural sac

Mammalian lungs

Structure of lung lobule

Each cluster of alveolis surrounded
by elastic fibers and a network of capillaries.

Physical Properties of the Lungs

Compliance = Distensibility (stretchability) = Ease with which the lungs can expand.
Affected by surfactant. Inhalation = to increase volume which decreases pressure and so air can flow into lungs

Elasticity = Tendency to return to initial size after distension.

- High content of elastin proteins.
- Very elastic and resist distension.
- Recoil ability. Affects exhalation. Exhalation at rest is passive due to elastic recoil
- Inhalation is active = use skeletal muscle
- Exhalation at rest is passive = use elastic recoil

Mammalian lungs - alveoli

The Lungs - Alveoli

Alveolar Epithelium

- Consists of simple squamous epithelium = one layer and thin = gas exchange
- Consists of thin, delicate pneumocytes type I = gas exchange
- Patrolled by alveolar macrophages, also called dust cells
- Contains pneumocytes type II that produce surfactant. Surfactants = an oily secretion $=$ Contains phospholipids and proteins

The Lungs - surfactants

Surfactants = Decrease the Work of breathing = less ATP

- Fluid is under tension $=$ like thin membrane being stretched. Why do we need some fluid? Gases have to dissolve before they diffuse
- Surface tension is directed toward the center of the alveoli and this creates pressure \rightarrow Surfactans decrease the surface tension = increases compliance \rightarrow easier to increase the volume of the lungs = less work is used.

From: Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function
Cristina Casals and Olga Cañadas.
Biochimica et Biophysica Acta (BBA) - Biomembranes;

Compliance $=$ measure of how easy it is to inflate lungs

Mammalian lungs

Branching of airways

The trachea Branches in to two bronchi, one to each lung. Each bronchus branches 22 more times, finally terminating in a cluster of alveoli.

Important Pressures

- Atmospheric pressure is the pressure of the air outside the body. Has to be higher than inside the lungs to get air in
- Intraalveolar pressure is the pressure inside the alveoli of the lungs. Has to be less than atmospheric pressur for air to move into lungs/alveoli
- Intrapleural pressure is the pressure within the pleural cavity. Pressure is negative, due to lack of air in the intrapleural space

Flow and airway resistance

- Flow $=\Delta P / R, \Delta P=$ pressure gradients; $R=$ resistance to flow
- If resistance increases, a greater ΔP is needed to maintain the same flow
- Airway resistance is inversely proportional to airway radius to the $4^{\text {th }}$ power $\left(1 / r^{4}\right)$. What does this mean in terms of radius? Small changes in radius lead to big changes in flow
- Bronchoconstriction - reduction in airway radius. Histamine causes brochoconstriction - think allergic reaction and antihistamine
- Bronchodilation - increase in radius = sympathetic nervous system

Resistance (R) is directly proportional to the length (L) of the "tube" and the viscosity (η), and inversely proportional to the radius to the fourth power $\left(r^{4}\right)$.

$$
R=\frac{\eta^{*} L}{r^{4}}
$$

Mammals - Ventilation

Tidal ventilation. Somatic nervous system controls skeletal muscle

 Steps. Don't have to memorize- Inhalation
- Somatic motor neuron innervation
- Contraction of the external intercostals and the diaphragm
- Ribs move outwards and the diaphragm moves down
- Volume of thorax increases and
- Air is pulled in
- Exhalation
- Innervation stops = electrical signal stops
- Muscle relax
- Ribs and diaphragm return to their original positions
- Volume of the thorax decreases
- Air is pushed out via elastic recoil of the lungs

Air moves into and out of the lungs along pressure gradients that are the result of volume changes

Intrapulmonary

 pressure. Pressure inside lung decreases as lung volume increases during inspiration; pressure increases during expiration.Intrapleural pressure. Pleural cavity pressure becomes more negative as chest wall expands during inspiration. Returns to initial value as chest wall recoils.

Volume of breath.

 During each breath, the pressure gradients move 0.5 liter of air into and out of the lungs.

Spirometry

Method for measuring pulmonary function

The Lungs = some diseases

Pneumonia = acute infection or inflammation of the alveoli = Causes fluid to leak into alveoli and will compromise respiration

Emphysema $=$ destruction of the walls of the alveoli $=$ due to loss of elastic fibers (smoking, pollution, dust) = creates less surface area for gas exchange

Pulmonary edema = fluid accumulation in interstitial spaces and alveoli = could be due to high capillary pressures or increased fluid loss of capillaries

SIDS = sudden infant death syndrome = more common in infants of drug abuse, smokers, premature babies, etc.

Chronic bronchitis = excessive secretion of bronchial mucous = leading cause is smoking = cilia are compromised

Air breathers:

Summarize respiratory strategies Structures involved ie muscles. Types ie unidirectional, tidal

You have learned how water/air enters the respiratory structure

Next step: Gas exchange

Oxygen Transport

- Solubility of oxygen in aqueous fluids is low
- But Respiratory pigments help to increase the amount of O_{2} in blood
- By binding oxygen to carriers, PO_{2} in the blood remains low and results in improved oxygen extraction
- Contain metal ions
- Gives them a strong colour (e.g. hemoglobin - red)
- Oxygen binds reversibly to the metal ion
- Bind to the pigment at the lungs
- Releases from the pigment at the tissues

Oxygen carrying capacity of blood

- Because of the low solubility of oxygen in aqueous solutions, only a small amount of oxygen can dissolve in blood
- PO_{2} is equal in plasma and lungs, but oxygen content of plasma is much lower

Amount of oxygen that can dissolve in plasma is limited at physiological PO_{2}

$$
\text { Henry's Law: }\left[\mathrm{O}_{2}\right]=\mathrm{PO}_{2}{ }^{*} \mathrm{~S}_{\mathrm{O}_{2}}
$$

O_{2} content of plasma $=3 \mathrm{~mL} \mathrm{O}_{2} /$ L blood
O_{2} content of red
brood cells $=0$
Total O_{2} carrying
$3 \mathrm{~mL} \mathrm{O}_{2}$ / blood

Oxygen carrying capacity of blood

Oxygen transport at normal

PO_{2} in blood with hemoglobin

Red blood cells with hemoglobin are carrying 98% of their maximum load of oxygen

```
O
O2 content of red
blood cells
Total O2 carrying
capacilty
= 197 mL O2
```

- If an oxygen carrier such as hemoglobin is present, some of the oxygen will bind to the pigment
- This oxygen no longer contributes to PO_{2}
- PO_{2} is the same as in the previous example, but oxygen content is higher. The oxygen carrying capacity is much higher with metalloproteins.
- PO2 = partial pressure of O2

$$
\text { Henry's Law: }\left[\mathrm{O}_{2}\right]=\mathrm{PO}_{2} * \mathrm{~S}_{\mathrm{O}_{2}}
$$

Respiratory Pigments

Three major types

- Hemoglobins
- Vertebrates, nematodes, some annelids, crustaceans, and insects
- Consist of a protein globin bound to a heme molecule containing iron
- Usually located within blood cells
- Appears red when oxygenated
- Myoglobin is found in muscles = holds on very tightly to O 2
- Hemocyanins
- Arthropods and molluscs
- Contain copper
- Usually dissolved in the hemolymph
- Appears blue when oxygenated
- Hemerythrins
- Sipunculids, priapulids, some annelids = Worms
- Contains iron directly bound to the protein
- Usually found inside coelomic cells
- Appears violet-pink when oxygenated

Hemoglobin and Myoglobin

Hemoglobin = protein = will eb affected by pH, Temperature, Pressure

- Each contains a heme group
- Each heme group can bind 1 molecule of oxygen
- Therefore 1 Hb molecule can bind 4 oxygen molecules

Myoglobin
-Type of hemoglobin found in vertebrate muscle

-Each Mb molecule binds one molecule of oxygen
-"stores" O2 in skeletal muscle

- Holds onto the O2 strongly

Gas Transport $-\mathrm{O}_{2}$

Carrying capacity $=$ the maximum amount of oxygen that can be carried in blood

- Total O_{2} in blood = dissolved $\mathrm{O}_{2}+\mathrm{O}_{2}$ bound to respiratory pigment

Oxygen-Hemoglobin Saturation Curve:

- shows the relationship between partial pressure of oxygen in the plasma and the percentage of oxygenated respiratory pigment in a volume of blood
- \boldsymbol{P}_{50} - oxygen partial pressure at which the pigment is 50% saturated. Used as an indicator of affinity. In the figure the P50 is about 28 mmHg . This means that for this protein (Hb), at $28 \mathrm{mmHg} 50 \%$ are saturated with O 2

Fon ant Mase.intive

Gas Transport $-\mathrm{O}_{2}$

Myoglobin

- has a lower P_{50} than Hemoglobin
- Myoglobin has higher oxygen affinity
- PO2 for Myoglobin has to be very low for it to let go of O2 © . Helps while exercising

Also note the difference in the shapes of the curve

- The hemoglobin curve is sigmoidal
- Myoglobin curve is hyperbolic
- Hb changes shape each time a molecule of O_{2} is bound
- Each O_{2} bound makes next O_{2} binding easier
- Allows Hb to bind O_{2} when O_{2} levels are low
- Myoglobin only binds one O_{2}

(a) Oxygen equilibrium curves

(b) A model for hemoglobin cooperativity

Gas Transport - O_{2}

The Bohr Effect $=$ the effect of pH on hemoglobin-saturation curve $=$ the effect of CO2/pH on the behaviour of hemoglobin. Don't forget proteins are affected by their environement

- Caused by CO_{2}
- CO_{2} diffuses into RBC
- An enzyme, called carbonic anhydrase, catalyzes reaction with $\mathrm{H}_{2} \mathrm{O}$
- Produces carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ which dissociates into hydrogen ion $\left(\mathrm{H}^{+}\right)$ and bicarbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$
- An increase in CO 2 can cause a decrease in pH
- When pH drops more oxygen is released \rightarrow Curve shifts to right
- When pH rises less oxygen is released \rightarrow Curve shifts to left

Bohr effect

pH

- As pH decreases, affinity of Hb for O_{2} decreases $=$ enhances unloading $===$ Shifts curve to right
- Hemoglobin is a protein that will change shape in response to its environment. At low pH , will change shape and let go sooner of O2. At high pH , will change shape and let go later of O 2
- The more active you are, the more CO 2 you will produce, also the $\mathrm{H}+$ will produced. The more active, the more O 2 you need. SO the the Hb will sense change in activity and the Hb will let go sooner of $\mathrm{O} 2=$ right shift $=$ lower affinity (:)
$\mathrm{P}_{\mathrm{CO} 2}$
- Also shifts curve to right
- As $\mathrm{P}_{\mathrm{CO} 2}$ rises, Hb unloads oxygen more easily
- Low blood pH can result from high $\mathrm{P}_{\mathrm{CO} 2}$

(a) Efiect of pition altinity of hemoglobin lor caypen

(a) Elect of $P_{\text {cg, }}$ on allinity of hemogotin for axypen

Figure 23.20 Tontora - PAP 12/e
Copyighe O John Wiey and Sons, Inc, All rig'ts seserved.

Temperature and Bohr

- As temperature increases, more oxygen is released from Hb . Why? When Temperature increases, more activity, and so let go sooner of O2
- During hypothermia, more oxygen remains bound. Why? Allows to bring O 2 to tissues that are farther from heart because blood flow has decreased = at cooler temperatures, holding onto O 2 helps to get it to little toe

Structure of the pigment

Fetal hemoglobin has a lower P_{50} than maternal hemoglobin. Fetus gets O2 from mom

Conditions That Affect Oxygen Affinity

Organic modulators (e.g., 2,3-DPG, ATP, GTP); DPG = Diphosphoglycerate
= byproduct of RBC activity = always have some

- Increases in these modulators decrease oxygen affinity; right shift
- Helps oxygen unloading at tissues
- High DPG = just means you are running amok = let go of O2 sooner

Root effect - something fishy

Root effect - a Bohr effect with a reduction in the oxygen carrying capacity

- Seen in hemoglobin of many teleost fishes
- Helps in oxygen delivery to eye and swim bladder = affects buoyancy
- Root effect is a right shift with a reduction in carrying capacity $=\mathrm{O} 2$ will diffuse into the swim bladder = increase buoyancy

Swim bladder and Oxygen

- Many bony fish have a swimbladder that helps to maintain neutral buoyancy
- Gas-filled sac
- Fill with gas to increase buoyancy
- Remove gas to reduce buoyancy
- In most species this gas is oxygen
- Gas gland excretes lactic acid
- Acidity causes hemoglobin of the blood to lose its oxygen
- Oxygen diffuses into the bladder while flowing through a complex structure known as the rete mirabile

Summary of oxygen transport

Factors contributing to the total oxygen content of arterial blood

Carbon Dioxide Transport

- Carbon dioxide is more soluble in body fluids than oxygen
- Little CO_{2} is transported in the plasma
- Some CO_{2} binds to proteins = carbaminohemoglobin
- Most CO_{2} is transported as bicarbonate
- $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (carbonic acid) $\Leftrightarrow \mathrm{HCO}_{3}{ }^{-}($bicarbonate $)+\mathrm{H}^{+}$
- Carbonic anhydrase catalyzes the formation of $\mathrm{HCO}_{3}{ }^{-}$

Carbon Dioxide Transport

CO2 transport

At tissues:
CO 2 is produced during cellular respiration $=$ Krebs cycle
CO2 diffuses out into plasma
1.Some will stay in plasma dissolved
2.Most will enter RBC:

1. Some will bind directly to Hb , after Hb has let go of O 2 : $\mathrm{Hb}-$
2. Most of it will combine with H 2 O in presence of carbonic ant 1. $\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O} \leftrightarrow \mathrm{H}++\mathrm{HCO}-$
3. $\mathrm{H}+$ will bind to Hb after Hb let go of $\mathrm{O} 2: \mathrm{Hb}-\mathrm{H}+$
4. HCO3- is removed to the plasma for exchange of $\mathrm{Cl}-$
$=$ chloride shift. Most CO2 carried back to lungs as HCO3-

CO2 transport

At lungs:

1. The dissolved CO2 will diffuse out = exhale
2.Within the RBC the Hb will let go of the CO 2 and then can bind O2. The CO2 will diffuse out $=$ exhale
2. HCO3- is brought back into RBC via reverse chloride shift $=\mathrm{Cl}-$ and $\mathrm{HCO} 3-\mathrm{in} . \mathrm{Hb}-\mathrm{H}+=$ will let go of $\mathrm{H}+$ and so Hb can bind O^{\prime} Then : HCO3- + $\mathrm{H}+\leftrightarrow \mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$

Carbon Dioxide Transport

(a) Oxysen release and carben diloxide plekup at the tilsause

(b) Oxypen pickup and carben dioxide release in the luags

Carbon Dioxide Equilibrium Curve

- Shows the relationship between $\mathrm{P}_{\mathrm{CO} 2}$ and the total CO_{2} content of the blood
- The shape of the curve depends on the kinetics of HCO_{3} formation
- Deoxygenated blood can carry more CO_{2} than oxygenated blood = Haldane effect
- Removal of oxygen from hemoglobin increases hemoglobin's affinity for carbon dioxide

Regulation of Respiratory Systems

- Respiratory systems are closely regulated
- Respond to changes in external and internal environment
- Must be able to supply sufficient oxygen to meet metabolic demands
- Must be able to remove carbon dioxide to prevent pH disturbance

Vertebrate respiratory and circulatory systems work together to regulate gas delivery by

- Regulating ventilation
- Altering oxygen carrying capacity and affinity
- Altering perfusion

Definitions

Hypoventilation $=$ Abnormally low respiration rate $=$ like holding your breath \rightarrow results in CO_{2} buildup in blood (high $\mathrm{P}_{\mathrm{CO}_{2}}$) = hypercapnia

Hyperventilation $=$ Abnormally high respiration rate. Not exercise $=$ exercise is good \cdot. Panic attack is an example
\rightarrow results in abnormally low $\mathrm{P}_{\mathrm{CO}_{2}}=$ hypocapnia

- Acidosis: \downarrow plasma pH = due to increase in H+. Increase in CO2 leads to increase in $\mathrm{H}+$
- Alkalosis: \uparrow plasma $\mathrm{pH}=$ due to decrease in $\mathrm{H}+$. A decrease in CO 2 leads to a decrease in $\mathrm{H}+$
$\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O} \leftrightarrow \mathrm{H}++\mathrm{HCO} 3-$
The effects of CO2 on acid-base homeostasis...

Law of mass action

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

Law of mass action:

when a reaction is at equilibrium, the ratio of the products and substrates will remain constant.
(a) Reaction at equilibrium

Rate of reaction in
= rate of reaction in forward direction (f_{4})
(b) Equilibrium disturbed.

Add $\mathrm{A}+\mathrm{B}$ to system

Law of mass action:

when a reaction is at equilibrium, the ratio of the products and substrates will remain constant.
(c) Reaction rate r_{1} increases to convert some of added A + B into product C $+\mathbf{D}$.

More $\mathrm{H}_{2} \mathrm{CO}_{3}$ formed
(d) Equilibrium restored when
[C] [D]
$[A][B]=K_{\text {eq }}$ once more.

The ratio of products to substrates is always the same at equilibrium.

CO_{2} and acid-base disturbances

1. Metabolic acidosis = too much acid; pH is decreased = due to too many $\mathrm{H}+$. Your lungs are working fine. When you exercise H+ increase due to ATP hydrolysis = will hyperventilate = blow off CO2

- What causes metabolic acidosis?

Proton accumulation, ketoacids (from breakdown of fats or amino acids),
kidney disease $=$ pee out $\mathrm{H}+$ but kidneys are not peeing out $\mathrm{H}+$

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \diamond \mathrm{H}_{2} \mathrm{CO}_{3} \diamond \mathrm{HCO}_{3}^{-}+\underline{\text { 仓 }} \mathrm{H}^{+}
$$

- How can we fix it?
- Hyperventilate ie CO_{2} can be blown off at the lungs
- Renal (kidneys) compensation - Secretion of H^{+}and reabsorption of bicarbonate. Only if kidneys are functioning properly

CO_{2} and acid-base disturbances

2. Respiratory acidosis = lungs cannot remove all of the carbon dioxide the body produces; ph is decreased due to increase in $\mathrm{H}+$. Now lungs are messed and so cant use lungs to fix problems

- What causes respiratory acidosis?

Hypoventilation which could be due to a wet lung, some obstruction in respiratory system. Anything that prevents CO 2 exhalation such as fluid

$$
\hat{\imath} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \Rightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

- How can we fix it?
- Renal (kidneys) compensation only - Secretion of H^{+}and reabsorption of bicarbonate.
- Cant use lungs to fix it because the lungs are mucked up

CO_{2} and acid-base disturbances

3. Metabolic Alkalosis = Loss of protons; pH is elevated above normal

- What causes metabolic alkalosis?

Loss of protons due to vomiting, etc. Puke = puke up HCl-. Diarrhea = loss of ions, including $\mathrm{H}+$

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \Rightarrow \mathrm{HCO}_{3}^{-}+\sqrt{ } \mathrm{H}^{+}
$$

- How do we fix it?
- Must make more H+ as we are losing H+
- Hypoventilate - keep CO2 ie PCO_{2} increases. By holding your breath, you will: Keep CO 2 in and $\mathrm{CO} 2+\mathrm{H} 2 \mathrm{O} \leftrightarrow \mathrm{HCO} 3-+\mathrm{H}+$ and now we have more $\mathrm{H}+$
- Renal (kidneys) compensation - bicarbonate excreted and H^{+}reabsorbed

CO_{2} and acid-base disturbances

4. Respiratory Alkalosis $=$ removing too much CO_{2} across lungs.

- What is the cause? Due to hyperventilation = panic attack. Cant use lungs to fix it cause lungs are messed up

$$
\checkmark \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \triangleleft \mathrm{H}_{2} \mathrm{CO}_{3} \diamond \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

- How do we fix it?

Renal (kidneys) compensation only - bicarbonate excreted and H^{+} reabsorbed
Breathing into a bag will allow you to rebreathe CO 2 and thus not lose it

Regulation of Ventilation

- Ventilation is an automatic process
- Continues even when we are unconscious
- Central pattern generator in medulla
- Rhythmic firing of central pattern generators within the medulla initiate ventilatory movements
- Pre-Botzinger complex is an important respiratory rhythm generator in mammals

Regulation of Ventilation

- Chemosensory input helps modulate the output of the central pattern generators
- Chemoreceptors detect changes in $\mathrm{CO}_{2}, \mathrm{H}^{+}$, and O_{2}
- Oxygen is the primary regulator in water-breathers while CO_{2} is the primary regulator in air-breathers

Regulation of ventilation

- Ascending sensory input comes from chemosensory neurons in carotid and aortic bodies, in vasculature of lungs, and chemoreceptors in the medulla
- Modulates the rate and depth of breathing
- Negative feedback loop to maintain blood PO_{2} and PCO_{2} within a narrow range

Carotid and aortic chemoreceptors

Glomus cells = chemosensory cells

Low PO2 and mechanism in carotid body

Glomus cells contain oxygen-gated K^{+}channels 1. Oxygen sensor detects low PO_{2}
2. Closes K^{+}channels = keep $\mathrm{K}+$ inside cells
3. Cell depolarizes = makes cells more positive
4. Causes release of dopamine = electrical signal will result in release of chemical messenger = dopamine
5. Stimulates sensory neuron
6. Send signal to CNS = start breathing more

High altitude = get less O2 per breath. Still 21\% O2 but PO2 lower

High PCO2 and mechanisms in central chemoreceptors

- Most important controllers in mammals
- Sensitive to changes in PCO_{2} and pH
- CO_{2} crosses blood/brain barrier
- Carbonic anhydrase converts CO_{2} to $\mathrm{HCO}_{3}{ }^{-}$and H^{+}
- H^{+}stimulates receptor
- Stimulates ventilation = exhale CO2

Respiratory Performance and smoking

Oxygen at Altitude - a special case

- Pressure declines as altitude increases
- Oxygen delivery to body dependent on partial pressure of oxygen
- Concentration of oxygen doesn't change but you get less oxygen per breath
- At 12,000 ft you get $\sim 40 \%$ less oxygen per breath

Moderate Altitude - initial symptoms

- Headache
- Nausea
- Fatigue
- Loss of appetite
- Difficulty sleeping
- Frequent Urination

High Altitude - symptoms

- Confusion
- Reduced mental acuity
- Loss of coordination
- Cerebral edema
- Pulmonary edema
- Death

Oxygen at Altitude - a special case

Sleeping patterns

1. Low inspired oxygen $\left(\mathrm{PaO}_{2}\right.$ low $)$
2. CO_{2} production normal
3. Arterial/Carotid chemoreceptors sense low O_{2}
4. Increase rate and depth of breathing to bring in O 2 even at rest
5. $=$ Hyperventilate $=$ blow off more CO2 than produced
6. Leads to Hypocapnia = low CO2 in blood due to Respiratory Alkalosis. Also pee more to keep H^{+}due to kidneys being more active = pee more
7. Intermittent breathing (especially at night)
8. Causes difficulty sleeping

Lungs = later

1. Inspired air low PO_{2}
2. Sensors in lung detect low oxygen
3. Causes vasoconstriction in lung
4. Reduces blood flow
5. Increases blood pressure
6. Can lead to pulmonary edema

Solution = later

- Increased EPO = RBC increase
- Increased hematocrit
- Peripheral vasodilation

Oxygen at Altitude - a special case

How do diving mammals deal with the lack of oxygen ie cant breathe under water

Dive response

Dive Response

- Apnea = breath hold
- Bradycardia = decrease of Heart rate from resting/baseline = conserve O2.
- Peripheral Vasoconstriction = reduce blood flow to non-essential tissues = helps to conserve O2
- Cooling of tissues to conserve energy

Oxygen Stores

- Lungs but many collapse lungs
- Blood = higher carrying capacities of O2
- Muscle = higher Myoglobin

Respiratory mechanics

High flow rates minimize the time for exhalation/inhalation cycle = rapid breaths allow animals to spend most of their travel time below the surface where drag is less

Hb and Mb

- Marine mammals have exceptionally high [Hb] values compared to terrestrial mammals.
- [Mb] in diving mammals are 10 to 30 times that found in terrestrial mammals.

O2 stores in different species

Species	mL O2 kg-1	Lung \%	Blood \%	Muscle \%
Human	20	24	57	15
Odontocetes	35	22	30	48
Otariids	40	13	54	33
Phocids	60	7	65	28
Sea Otter	55	55	29	16
Manatee	21	33	60	7

Graciously provided by Dr. M. Gardner and modified by Dr. C. Gerin

Some questions

- The common passageway shared by the respiratory and digestive systems is the \qquad
- The sites of gas exchange within the lungs are \qquad
- Most of the oxygen transported by the blood is \qquad
- In humans the most important chemical regulator of respiration is \qquad
- Define hypercapnia. \qquad
- Air moves out of the lungs when the pressure inside the lungs is \qquad
- Carbon dioxide is more soluble in water than oxygen. To get the same amount of oxygen to dissolve in plasma as carbon dioxide, you would have to \qquad
- Define affinity. How is Hemoglobin's affinity for O 2 affected? \qquad
\qquad
- Hyperventilation will \qquad CO 2 exhaled and thus \qquad pH. Use increase and/or decrease.

Some questions

- What is the function of surfactants? \qquad
- How does your body fix a respiratory acidosis? \qquad
- What is the significance (why do they matter) of Henry's law, Boyle's law and Dalton's law to the process of respiration? Explain why these laws matter in relation to the respiratory system.
- Diffusion rate increases with a decrease in molecular weight. True or False

